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FOREWORD

This is a final report on the research project, "Numerical Solutions of
Three-Dimensional Navier-Stokes Equations for Closed-Bluff Bodies," for the
period January I, 1987 to December 31, 1987. Special attention during this
period was directed to "Topology and Grid Adaption for High-Speed Flow
Computations." The work was supported by the NAS_ Langley Research Center
(Computer Applications Branch of the Analysis and Computation Division)
through the cooperation agreement NCC]-68. The cooperative agreement was
monitored by Dr. Robert E. Smith, ,Ir. of ACD-Computer Applications Branch.
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TOPOLOGY AND GRID ADAPTION FOR HIGH-SPEED FLOW COMPUTATIONS

By

J. S. Abolhassani I and S. N. Tiwari 2

SUr_MARY

This study investigates the effects of grid topology and grid adaption on
numerical solutions of the Navier-Stokes equations. In the first part of this
study, a general procedure is presented for computation of high-speed flow
over complex three-dimensional configurations. This includes the grid
generation and solution algorithm for Navier-Stokes equations in a general
three-dimensional curvilinear coordinate system. The flow field is simulated
on the surface of a Butler wing in a uniform stream. Results are presented
for _ach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type
grids have been used for this study, and the results are compared together and
with other theoretical and experimental results. The results demonstrate that
while the H-type grid is suitable for the leading and trailing edges, a more
accurate solution can be obtained for the middle part of the wing with an O-
type grid. In spite of seme discrepancies, the present numerical results
compare favorably with the experimental results. In the second part of this
study, methods of grid adaptien are reviewed and a method is developed with
the capability of adapting to several variables. This method is based on a
variational approach and is an algebraic method. Also, the method has been
formulated in such a way that there is no need for any matrix inversion. This
method is used in conjunction with the calculation of hypersonic flow over a
blunt-nose body. A movie has been produced which shows simultaneously the
transient behavior of the solution and the grid adaptiono

For both cases, the simulations are done by integrating the viscous
Navier-Stokes equations. These equations govern the unsteady, viscous,
compressible and heat-conducting flow of an ideal gas, and all viscous terms
are retained. The equations are written in curvilinear coordinates so that
the body surface is represented accurately. The computer codes are written in
FORTRAN, is vectorized and currently run on the CDC Vector Processing System
(VPS-32, CYBER 205) computer. The results indicate the viability and validity
of the proposed methods.

IResearch Associate, Dept. of _echanical Engineering and _1echanics

2Eminent Professor, Dept. of _lechanical Engineering and r_echanics
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Chapter I

INTRODUCTION

Continuum problems in engineering are quite often modeled by

systems of nonlinear partial differential equations. These equations

are usually complex and, in most instances, must be solved by numerical

means. The numerical solution of the governing partial differential

equations has two steps: (1) grid generation and (2) numerical

integration. Grid generation is the division ef the solution domain

into discrete interconnected points called grid points. The accumula-

tion of grid points is called a grid. The location of grid points is

primarily a function of boundary geo_,etry and the physics of the

problem. The grid should conform to the boundaries and be concentrated

in regions where there are large gradients. In the second step, the

derivatives in the partial differential equations are approximated with

algebraic expressions (usually by Taylor series expansions where higher

order terms are truncated). The most commonly used techniques for

integrating the governing equations are classified as finite difference

techniques, finite volume techniques or finite element techniques. The

accuracy of a numerical solution depends on both the solution technique

and the grid. Grid points must be appropriately defined to apply

boundary conditions and must be sufficiently close together to resolve

the physics to the desired level of accuracy. They must also be

oriented relative to each other in such a manner that errors are not



introduced into the solution. On the other hand, computer speed and

memory limit the number of grid points that can be used in the solution

of a given problem. It is, therefore, necessary to distribute grid

points to maximize overall accuracy while covering the entire region of

interest.

If the grid points are ordered in such a way that the relationship

between any grid point and its neighbors is the same for all grid

points, then this grid is called a structured grid. A structural grid

can be generated numerically by determining the values of the physical

coordinates in the physical domain fro_, the values on the boundaries.

This can be accomplished in two basic ways: (1) by algebraic

interpolation from the boundary values, and (2) by solving a set of

partial differential equations with the boundary geometry as a boundary

condition. The resulting boundary-fitted coordinate syster, is a

curvilinear coordinate system having some coordinate lines (surfaces in

three-dimensions) conforming to the shape of each boundary. When the

governing equations are transformed onto such a coordinate system, a

finite approximation can be made using neighboring points at coordinate

line intersections, without the need for interpolation, regardless of

boundary shape and boundary movement. Thus, quite general code can be

written for the numerical solutions of the governing partial

differential equations on arbitrary regions. Although many of the

accomplishments in grid generation have occurred within the field of

computational fluid dynamics, the techniques are equally applicable in

electromagnetics, solid mechanics, and other areas involving solutions

of partial differential equations in an arbitrary region. The



literature on grid generation is extensive and this is critically

reviewed in [I, 2]*.

An examination of the Taylor series expansion of a function about a

point in the solution domain, reveals that the truncation error depends

on derivatives of the solution and characteristics of the grid, such as

distribution of spacing, orthogonality and aspect ratio. The selection

of a grid topology has direct effect on the solution of a given problem

through the introduction of singularities and constraints on the

orthogonality of the grid. Eriksson [3] has studied the effects of grid

singularities on the solution of the Euler equations. It was pointed

out that the nonconservative centered schemeis likely to be unstable at

mesh singularities, whereas, the conservative centered finite volume

scheme is stable in a local sense. Also, it was concluded that the

local time-stepping gives rise to exponentially growing modes for

nonconservative schemes. Mastin and Thompson [1, 4] examined two

sources of truncation error in the numerical solutions of partial

differential equations on a curvilinear coordinate system. The error

sources are derived from grid spacing and the degree of nonorthogonality

(grid skewness). It is possible for a poor distribution or orientation

of grid points to introduce errors into a numerical solution. For

example, suddenchanges in the line spacing and excessively skewedlines

can introduce negative numerical diffusion into a solution. Although

precise orthogonality is not essential, someerror terms vanish for an

orthogonal system. Also, Raithby [5] has observed that an excessive

*The numbers in brackets indicate references.
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grid skewness will exaggerate the truncation error. The literature

survey indicates a lack of information on the effects of grid topology

on the solution, especially in three-dimensions. In general, the

coordinate system should have lines concentrated in regions of an

expected high variation of the physical solutions. The coordinate

system should be coupled with the physical solution so that the

coordinate lines continually adapt to resolve the evolving gradients in

the physical solution. A significant an,ount of work on the grid

adaption is available in the literature and this is discussed, in

detail, in Chap. 6.

In regard to the grid generation and solution of continuum

problems, this study has two distinct objectives. These are: (I) the

qualitative assessment of errors resultirJg from the relative orientation

of grid points and overall grid topology, and (2) the proper

redistribution of the grid points over a region to minimize the

truncation error through grid adaption. In order to study the effects

of grid topology, flow over a Butler wing [6] has been simulated using

two different grid topologies. Solutions obtained with the two

topologies are compared with each other and with experimental results

obtained by Squire [7-9]. In the second part of this study, a method of

grid adaption with the capability of adapting the grid points to several

variables is proposed. This method is formulated in such a way that it

is not necessary to solve a system of equations and is, therefore, very

efficient computationally.

The physical models used in this study are discussed in Chap. 2.

The formulations of the governing equations are presented in Chap. 3.

The method of solution and the initial and boundary conditions are

4



explained briefly in Chaps. 4 and 5, respectively. Chapter 6 contains a

review of the grid-adaption method and discussion of the proposed new

method. Finally, some critical results are presented in Chap. 7.



Chapter 2

PHYSICAL MODELS

The two basic physical models considered for this study are

discussed briefly in this chapter. These are a Butler wing and a blunt

leading edge of a panel holder.

The Butler wing is a good test case for investigating the effects

of grid topology on the numerical solutions of Navier-Stokes equations.

This is due to a unique feature of its geometry. The Butler wing is a

r

delta wing which was proposed by D. S. Butler [6]. The plan form of the

wing is an isosceles triangle, and the leaaing edges of the wing lay

along the Mach lines of the unperturbed stream. The first twenty

percent of the wing is conical and the last eighty percent of the wing

has elliptical cross sections with increasing eccentricity along the x-

axis (Fig. 2.1). At the trailing edge, the elliptical cross section has

infinite eccentricity and is a straight line. The Butler wing is

symmetric about (x-z) and (x-y) planes. This permits the use of one

quarter of the entire physical domain with zero angle of attack (Fig.

2.1). However, if the angle of attack is greater than zero, then half

of the physical domain should be considered. The semi-major and minor

axes are given by

6
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X
Major axis (semi-span) =7_ 0 < x < L (2.1a)

X

Minor axis (thickness on =7_
cen terline )

x [x- 0.2L14 ][1 - o.sx "

where

A 2 : M2 - i .

0 < x < O.2L (2.1b)

O.2L < x < L (2.1c)

The model is 0.8 ft. (0.2438 m) long, and the geometry has been

generated for a Mach number of 3.5. That is the semi-apex angle of the

plan form and the initial conical nose is sin-l(1./3.5) = 16.6020 .

Butler has compared the experimental results for surface pressure

with the theoretical results [6]. These theoretical results are

obtained from inviscid equations of motion which are simplified by using

the slender-body approximations. Walkden and Caine estimated the

pressure on the surface of a Butler wing at zero incident in a steady

uniform stream. They numerically integrated the two semi-characteristic

forms of the equations governing invlscid supersonic flow of an ideal

gas with constant specific heats [10]. Squire has obtained experimental

results for a Butler wing with varying Mach number and angle of attack

[9]. In all previous analytical and numerical investigations, the

inviscid form of the equations of motion has been used.

Grid generation is the first step which should be considered in

obtaining flow field solutions over any configuration. Due to the data

base management of the present program, it is necessary to map an entire

physical domain into a rectangular parallelepiped. Among the grid

types, selection of an O-type grid for cross sections in the stream-wise

direction produces a point singularity at the nose tip and a line

11



singularity at the trailing edge (Fig. 2.2). Nevertheless, an O-type

grid maps the entire solid boundary onto an entire face of the

parallelepiped. It is also possible to generate orthogonal grid in the

regions where there is relative high curvature. However, an H-type grid

does not map the solid boundary onto an entire face of the computational

box (Fig. 2.2). This creates a potential problem in updating the

boundary conditions near the leading edges of the wing and also the grid

in someregions could be highly skewed. But, there are no singularities

in the grid. Figure 2.2 shows a topological comparison between H-type

and O-type grids for the Butler wing. Eoth types of grids have been

used in this study, and the results are comparedwith other numerical,

analytical an_ experimental results.

Another aspect of this study is the grid adaption for high-speed

flow computation. In the hypersonic flow about blunt bodies (Fig. 2.3),

the temperature, pressure and density of the flow increase almost

explosively across a shock wave. At the same time, the curved shock

wave is close to the body. Numerical simulation of this phenomenahas

been a great challenge to the computational fluid dynamics researchers.

Presently, there is a great deal of interest in improving the quality of

numerical simulation techniques, and grid adaption is one way to achieve

this goal.

The accuracy of finite-difference solutions depends on the fineness

of the grid. Therefore, the finer the grid, the more accurate the

numerical solution will be. Also, the accuracy of solutions depends on

the resolution of the solution gradient. The presence of large

gradients causes the error to be large in the difference approximation

of derivatives. In the presence of shock waves, more artificial

12
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diffusion must be added to retain adequate smoothness of the solutions.

Therefore, there is a need for schemes that can resolve large gradients

without adding additional grid points. An adaptive scheme moves the

grid points to regions of high gradients, when the locations of these

gradients are not known a priori. Also, an adaptive method reduces the

total number of grid points required to achieve a given accuracy, but it

requires more computer time. In some instances, the computer time makes

grid adaption impractical. The ideas used in the construction of

adaptive grid techniques are limited only by one's imagination; and any

scheme that works in the sense of providing a better solution is a good

one. The ultimate answer to numerical solutions of partial differential

equations may well be to dynamically adapt grids, rather than to devise

more elaborate difference representations and solution methods [11].

In both cases, the flow is simulated by solving the Navier-Stokes

equations numerically. The equations are unsteady, compressible,

viscous and three- or two-dimensional. The time dependency of the

governine equations allows the solution to progress naturally from an

arbitrary initial guess to an asymptotic steady state, if one exists.

The equations are transformed from physical coordinates to computational

coordinates, allowing the solutions to be computed in a rectangular

domain. The equations are solved by the MacCormack time-split technique

[12, 13] which is vectorized and programmed to run on the CDC VPS-32

(CYBER 205) computer. The code is written in 32-bit (half-word)

FORTRAN. The details of the formulation and solution procedure are

presented in the subsequent chapters.

_ L i i
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Chapter 3

GOVERNINGEQUATIONS

3.1 Navier-Stokes Equations

The governing equations for a thermal fluid system are the conser-

vation of mass, momentumand energy. These equations are developed for

an arbitrary region under the assumption that the system is a continuum.

Equations of motion for a viscous, compressible, unsteady and heat-

conducting fluid can be written as [14]

_p
Continuity: "_T + v • (pu) = 0 , (3.1a)

_(pS) --
Momentum: T + v • (puu - _) = 0 , (3.1b)

m

_)(E) • _ c_) = 0 (3.1c)
Energy: _ + V • (Eu + q - • ,

where E is the total energy per unit volume given by E = p(e + vov/2)

and e is the internal energy per unit volume. Equations (3.1b-3.1c) can

be simplified by assuming that the stress at a point is linearly

dependent on the rate of strain (deformation) of the fluid (Newtonian

fluid)

_)ui 5uj p' _u._..._]_ij: - P 6ii+ _ [(_-_+T_T)+ 6ij . (32a)

The Kronecker delta function is denoted by 6ij, and _' Is the second

coefficient of viscosity which is related to the coefficient of bulk

17



viscosity (K) by the expression _ = 2_/3+p'. The contribution of _ can

be neglected if the pressure in a fluid is not changed abruptly during

its expansion or contraction, in other words, the hydrostatic pressure

is assumed to be equal to the average of the normal stresses. Under

this assumption, the stress tensor can be related to the pressure and

velocity components as

_ui Buj auk

_j : - P_j +" [(T_.+T_T)- -__j XT_k]•
J

(3.2b)

For an isotropic system, the heat flux in Eq. (3,1c) can be expressed in

terms of temperature gradient (Fourier law of heat conduction) as

= - K v T (3.3)

where K is the coefficient of thermal conduction. A common

approximation used for viscosity is based on the kinetic theory of gases

using an idealized intermolecular-force potential. The relation is

+S

"__: (__)3/2TO o
Po o "Y + So

(3.4)

where

S = 198.6 OR
0

T = 492 OR
0

Po = 0"35xi06 (Ibf-sec)/ft2

the coefficients of thermal conduction K can be determined from the

Prandtl number as

18



where Cv is the specific heat at a constant volume and

of specific heats.

(3.5)

y is the ratio

It is essential to have a supplementary relation to close the

system of equations, Eqs. (3.1a-3.1c). By neglecting the intermolecular

forces (thermally perfect system), the thermodynamic properties can be

described by the equation of state

P = pRT (3.6)

where R is the universal gas constant. The assumption of thermally

perfect gas permits the internal energy to be expressed as a function of

temperature only i.e., e=e(T). In addition, the assumption of a

calorically perfect gas [e(O)=O] allows the following relation

e : C T . (3.7)
v

A substitution of Eq. (3.6) into Eq. (3.7) results in

P : pe (y-i) . (3.8)

The equations of motion are in conservative form. For simplicity, these

equations can be written in a compact vector form as

where

_U _F i)G _H
: 0 , (3.9)

U =

p

pu
pV

pw

E

, F=

pu

puu - %xx

puv
xy

Uw - _XZ

+ P

,Eu + qx - ¢x + Pu

19



puv - Xyx + P

6 = _pvV Xyy

pvW _yzEv + qy " ¢y + P

"_XX
= _p + 2_ _ _("6"_

pW

oUW" CZX

pVW '_zy

pWW " "I:ZZ

F..w+ qz -

I

i

!

'_xy

i_u + i_v) ,
= _(,._ -,_

bW + 5U

"_xz= _CT_ "_'_) '

+

_W

'_yz

_W

= _p + 2_
ZZ

+ W'IXZ

CX = U'_XX + V'_Xy

+ W_;yz
Cy = U._xy + V'_yy

+ W_;ZZ
= + V'_y z

(_Z U'_XZ

==,=_.

_T
= -_ _ '

qx

_T

= -K "El"
qy

_T
-_ -K _ •qz

/-
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3.2 Navier-Stokes Equations in Computational Coordinates

For the sake of generality, the governing equations are transformed

from a physical domain into a computational domain as

 xll !
5U 5F 5G _H

_-_ + _y _'_ _

_z

+ _y "_

_z

+
_F 5G

my _q a_

qz

: o . (3.10)

The stress tensor, dissipation function and heat conduction must also be

transformed from a physical domain into a computational domain. Using

Eqs. (A.23c) and (A.24a), they can be expressed as

XX _u _q au 5___ a_ au _ au a_ au: -P + 21_ [_x_-_-_-+-_--_-_+-_-_ ) - 2/3 I_ (-_-R--_-_+-_--_-_ +-_-_- _-

f f F

+ T# _ + T# _ + T# _ + T_ _ + _ _ + T_ _-C),

i)_ _)v 5_ 5v 5_ 5v 5_ 5w 5_ 5w

21



a_ av _n av _{ av _)_ aw _ aw a_+T#_+T_+T#_C+_ +_T_+_ )

aT a_ aT a_qx = -K (_x_-_-E+-_-_ +_-_ ) ,

&y _{ aT _q _T a_:-K (_T[+T_+T_ ) ,

aT a_ aT a_ z:-K ).

The transformation is based on the chain rule. The transformation

coefficients can be computed from a functional relation between the

computational coordinates and the physical coordinates as

= { (x, y, z) ,

: _ (x, y, z) , (3.11)

= _ (x, y, z) .

If the relation in Eq. (3.11) were known, the transformation coefficient

could have been computed by direct differentiation. If not, after some

algebraic manipulations (Eq. A.14), the transformation coefficients can

be computed by

22



f
B_ a_
T_ _7
B_ _q

B_ B_

T_ T_

: [j]

Bx Bx _)x

By By By

Bz Bz Bz

-1

(3.12)

where [j-l] is defined as

_T TC

('_ -_ - -_ "_) -(-_ -_ - _ -(-_ _ _ T_)

(3.13)

_x _x _x
T_ T_ TC

By _y By

Bz Bz _z

_ T_TC

Bx By Bz By__ Bx By Bz By._=T_ (T_'_- "_ ) - - )

In the case of a Butler wing, the grid planes are perpendicular to

the x-coordinate. Consequently, physical coordinates can be written as

x : x ({) ,

y = y ({, _, _) , (3.i4)

z :z (_n, {) .

This reduces the transformation coefficients from nine to five non-zero

elements and, therefore, reduces the memory requirements.

23



In the case of grid adaption, the physical geometry is two-

dimensional. Therefore, all derivatives with respect to the x and

coordinates are set to zero. This simplifies the governing equations to

the following form

___ + [ ] + ] (-_-_) = 0 (3.15)

where

pv pvv - _yy + P

U : PEW , C = )PVW -._y z

Ev + qy- + Pv

lw 1
pvw - _zy

pww + P
H = zz "

JEw + qz - tz + Pw

There are four non-zero transformation coefficients.

In both cases, the transformed governing equations are called Chain

Ruled Conservation Law Form (CRCLF) [15]. However, the governing

equations can be written with metric coefficients inside the

differentiations; this form is called the Strong Conservation Law Form

(SCLW). It has been shown [15] that CRCLF requires no special

considerations on how to compute the metric coefficients or their

derivatives and it also requires that fewer arithmetic operations be

performed compared to the other forms. Also, it has been shown that it

has the ability to capture weak shocks.
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Chapter 4

METHODOFSOLUTION

A time-marching method is used to compute the solution so that the

possible transient features can be readily captured. This explicit

method is a time-split predictor-corrector algorithm which is second-

order accurate in time and space [12]. The governing equations are

split into three groups of operators, each aligned with transformed

coordinates. Then, these equations, Eq. (3.10), are discretized in the

computational directions. In a compact form, they can be expressed as

un+l
i,j,k

where

= [Ln(at)] [Lc(Atc) ] [L_(At{)] [Lc(Atc)] [Lq(at)] Un1,j,k

and L{, L, and

respectively.

application of each operator applied

operator. Operator L{ can be defined as

L_(At_) = U°ut.1,3,k '
for the predictor step:

= uin at_ a_
Ui,j,k i,j,k - _ [(Fi - Fi-1) _-_ i + (Gi -

At = AtE = _ At_ (4.1)

LC are the operators in the _, _, and _ directions,

A time step is completed in this algorithm with the

symmetrically about the middle

(4.2a)

+ (Hi - Hi_ 1) _ i] , (4.2b)
j,k

25



for the corrector step:

U°ut =_ (U! n + Ui, At{i,j,k 1,j,k j,k - _ [(Fi+l

Operator L

_{ i + - Hi ) _ i ] ) .
+ (Gi+1 - Gi) _-Y (Hi+1 _ j,k

can be defined as

uOUt
L (At) = i,j,k '

(4.2c)

(4.3a)

for the predictor step:

= U!n5
-i,j,k i,j,k

+ (Hj-

for the corrector step:

uOUt 1 (uin
i,j,k= _ i,j,k

At [(Fj F ) _l _)_- j-1 _-x j + (Gj - Gj_ I) _ j

Hj-I) _-_ i,k

At
en

+ Ui,j,k - A--_ [(Fj+I - Fj) _6"_j

(4.3b)

5q - Hj) _z j]+ (Gj+1 - Gj) _-_ j + (Hj+1

Operator LE can be defined as

LE E) = Uout.I,3,k '

(4.3c)

(4.4a)

for the predictor step:

AtEin
UI,j, k = Ui,j, k - _-_ [(Fk

BE k + (Hk Hk- ) _E k] ,
+ (Gk - Gk-1) _-_ - 1 _-_ i,j

(4.4b)

26
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for the corrector step:

uOUt 1 (uin
i,j,k :'_ i,j,k + Ui,j, k

at_ _
- _-C [(Fk+l - Fk) _ k

_E k + - Hk) _ k] ) . (4.4c)
+ (Gk+l - Gk) _-_ (Hk+1 _ ij

Fluxes are computed by a forward-difference approximation for the

predictor and a backward-difference approximation for the corrector.

Therefore, the algorithm is second-order accurate in space. More

details can be found in [12-14].

The solution is stable if the time step of each operator does not

exceed the allowable step size for that operator. The finite-difference

scheme is consistent if the sums of the time steps for each operator are

equal. The solution is second-order accurate if the operators are

applied symmetrically [12-14].

This method has a time-step stability limit, but there is no

rigorous stability analysis available. A commonly used conservative

time-step is

At < min [#+._ +#+ c ( 1 1 I -1Ay _ +7 +T?)] (4.sl

where c is the local speed of sound. This is valid for cartesian

coordinates. Using Fourier series, a similar equation is derived for

general curvilinear coordinates in Appendix B

a_ )1/2 ]
A min

2+ {z2 , (4.6a)[lo_x÷v%+w_zl+c(_+%

At < rain [iLm x W_z A_
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A_ 2 2 + Z 1/2 ] " (4.6C)
At_ < min [[U_z + V_y + W_z[ + c(C x + _y _z )

In the supersonic and hypersonic regions, there exists large

gradients which require a very fine grid to resolve them. Most central-

difference methods admit a solution which has sawtooth or plus-minus

waves with the shortest wave length that the grid can support. In the

case of a nonlinear problem, these short waves interact, vanish, and

reappear again as distorted long waves, or oscillations. These

oscillations eventually cause the solution to blow up if they are not

resolved. These numerical oscillations are caused by truncation error

and can be reduced by grid refinements. The oscillations of "low

frequency" can be suppressed by adding a fourth-order damping term. A

common damping used is pressure damping. This is usually expressed in

cartesian coordinates as

where

[vz_ + c i)2 P _U_-_]-_ _t__ Ts-_[ P _6_
£ = 1,2,3 , (4.7a)

i _2 p _2 p [Pi+l,j,k - 2 Pi,j,k + Pi-l,j,k[

4P _) 61_ _ [Pi+l,j,k + 2 Pi,j,k + Pi-l,j,k [

i _2 p _2 p IPi,j+l,k - 2 Pi,j,k + Pi,j-l,k[

: T?: + '

I i)2 P _)2 p [Pi,j,k+l - 2 Pi,j,k

|
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The last term in Eq. (4.7a) is computed by a forward-difference

approximation for the predictor step and a backward-difference

approximation for the corrector step. It is commonto use only an

approximation of the second derivatives of pressure in the transformed

coordinate system, instead of using the actual rigorous transforma-

tions. The use of covariant velocities may raise problems for complex

grid topologies. One remedy for general curvilinear coordinates is to

use contravariant velocities defined by

U : (_xu + _yV + _zw) (x_+ y_+ z_) 1/2

V = (qxu + _yV + _zw) (x2_+ YR2+ z2)i/2_ (4.7b)

_V: (_xu + _yV + _zw) (x2_+ y2 + z2)1/2

To implement Eq. (4.7a), flux F in Eqs. (4.2a)-(4.2c) can be replaced by

F- (4.8a,

Flux G in Eqs. (4.3a)-(4.3c) can be replaced by

G (4.8,b)

Flux H in Eqs. (4.4a)-(4.4c) can be replaced by

_C; _2p. iw/ +c
H - _ _ (g33)I12 "

(4.8C)

The equations for g11 g22 and g33 are defined in Eq. (A.|O), and U, V

and W are defined in Eq. (4.7b)
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Chapter 5

INITIAL AND BOUNDARY CONDITIONS

In computational fluid dynamics the initial conditions usually

correspond to a real situation for a transient problem, or a rough guess

for a steady state problem. In practice, initial conditions are

obtained from experiments, empirical relations, approximate theories or

previous computational results. An improper initial guess may result in

generating unrealistic strong transient waves which propagate throughout

the computational region, dominating the flow field and eventually

leading to a solution failure. An important requirement for the initial

conditions is that they should be physically as close as possible to the

actual nature of the flow field in the region under study. This will

minimize the number of iterations required for convergence. An

attractive approach is to initialize the entire flow field with a crude

and simple guess (e.g., free stream conaition). During the course of

the computation, both body and upstream boundary conditions are changed

in a gradual manner to their final values over a prescribed number of

iterations. In the present study, this technique is applied in only one

step which is equivalent to impulsive initial conditions.

It is equally important to implement a realistic, accurate and

stable method to determine boundary conditions. The application of

certain conditions may cause numerical instability even though the flow

is physically stable. _ost of the boundary conditions currently
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implemented are drawn mainly from intuition, simple analytical

expressions, wind tunnel experiments and computational experimentation.

In the Selection of boundary conditions, consideration should be given

to the following criteria: convergence, staLility, computer time and

above all the physical justification.

are five different boundary conditions.

outer, solid boundaries, and symmetry.

For the Butler wing case, there

They are upstream, downstream,

5.1 UpstreamBoundary Condition for a Butler Wing

For the case of an H-grid, the upstream boundary is located at six

grid point spacings ahead of the nose of the wing. The following

undisturbed free stream conditions are assumedfor this boundary

UI,j, k = U® . (5.1)

For the case of an O-type grid, the upstream boundary is set at

five percent of the chord from the tip of the wing to avoid the point

singularity. The conical assumption has been made for this boundary

[16]. Flow is said to be conical if the physical conditions such as

pressure and velocity do not vary with position along any ray through a

point, referred to as the vertex. For this case, the viscous-conical

solutions are obtained for a cone at the proper angle of attack. This

is done by creating a conical grid which has straight lines (rays) from

the vertex (Fig. 5.1). Then, the conical Navier-Stokes equations are

integrated for the middle plane (plane B), then planes A and C are set

equal to plane B. This procedure is repeated until convergence is

reached. This solution is valid provided the wing is sufficiently

slender.
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Fig. 5.1 Conical grid
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5.2 Downstream,Boundary Conditions for a Butler Wing

A zero gradient in the _-direction (parallel to the primary

direction of flow) is assumedfor the downstreamboundary, i.e.,

_I =0. (5.2a)
IL,j,k

A backward-difference is used to approximate the Eq. (4.2a) which

results in

DIL,j,k = DIL_I,j,k . (5.2b)

5.3 Far-field Boundary Conditions for a Butler Win§

The outer boundary is located far away from the body to avoid any

influence on the interaction region. Presently, a zero normal gradient

of fluxes is assumedfor this boundary, i.e.,

_D I = 0 . (5.3a)i,JL,k

Similar to the down stream boundary condition, a backward difference is

used to approximate Eq. (5.3a) which results in

Ui,JL,k = Ui,JL_l,k . (5.3b)

5.4 Solid-Wall BoundaryConditions for a Butler Wing

The walls are assumed to be impermeable and no-slip boundary

conditions are applied, therefore, all velocity components are assumed

to be zero. Similarly, the wall is assumed to have a constant

temperature Tw. A zero normal pressure gradient is assumed for the

solid surface, i.e.
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_P I = 0 . (5.4)
_'_ Ii,l,k

This appears to be a boundary-layer approximation (i.e., a zero normal

pressure gradient). It is, however, a muchmilder approximation, since

constant pressure is not applied through the boundary layer but over one

grid line in the boundary layer. This approximation has yielded stable

computation for both the non-separated and separated boundary layers

[17]. For general curvilinear coordinates, Eq. (A.25b) can be used to

express Eq. (5.4) as

2 2 2
_P _x _x + _y _y + _z _z _x + _y + nz

- 2 + 2 + 2)I/2 P_ + 2 1/2 PC_x (_x2 + n_ + _z ) 11

_x TIx + _y qy + CZ nz
+ 1/2 P_ = 0 (5.5a)

This equation is approximated using a central-difference approximation

on the wall surface, and a second-order backward-difference approxima-

tion normal to the wall.

Pi,l,k = [4 Pi,2,k + 2 (C2 (Pi+1,2,k - Pi-1,2,k )

+ CI (Pi,2,k+1 - Pi,2,k-1 ))]/3 ' (5.5b)
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where
23

CI = g
g

12

C2 - g---_ .
g

(5.5c)

g12, g23 and g22 are defined by Eqs. (A.9)-(A.IO). Then, density is

computed based on pressure and wall temperature. At the wall, all

boundary conditions are second order accurate and are satisfactory even

for a skewed grid. Leading-edges of the wing have high curvatures near

the back of the wing, therefore the normal pressure may not be equal to

zero. Consequently, the above boundary condition may not be physically

viable.

problem. /

C

In the case of H-grid,

However, the results indicate they are accurate enough for this

a zero gradient in the _-direction is

assumed for the symmetry boundary, i.e.

: o
i)n (i,l,k

(5.6a)

A backward-difference approximation is used to approximate the Eq.

(5.6a) which results in

Di, I = Di,2, k • (5.6b)

Also, the velocity components normal to this boundary is set equal to

zero

w = 0 . (5.6c)
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5.5 BoundaryConditions for Blunt Leading-Edge

There are four boundaries in the computational domain with five

different boundary conditions. They are upstream, downstream, outer,

solid and symmetry boundary conditions. The top boundary (j=JL)

contains the upstream and the outer boundaries. The upstream boundary

condition is assumedto be the sameas the freestream condition which

can be expressed as

DjL,k : _ . (5.7)

Similar to the previous case, the outer boundary is located far away

from the body to avoid any influence on the interaction region. Using a

backward difference approximation, boundary condition for the top

boundary can be expressed as

A zero gradient in the

boundary.

be written

DjL,k = DJL_I,k . (5.8)

_-direction is assumed for the downstream

Using a backward-difference approximation, the following can

Dj,KL = Dj,KL_I . (5.9)

At the wall, all velocity componentsare assumed to be zero. A zero

normal pressure gradient is assumedfor the solid surface, which can be

expressed as

P1,k = [4 P2,k - P3,k + 2 C3 (P2,k+1 - P2,k-1 )]/3 ' (5.10)
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where

C3
_ _y Cy + _z _z

2' - •

_z + _y

A zero gradient in the y-direction is assumed for the symmetry

boundary, application of a backward-difference approximation yields the

following

Uj, 1 = Uj, 2 • (5.11a)

Also, the velocity component normal to this boundary is set equal to

zero

v = 0 , (5.11b)
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Chapter 6

ADAPTIVE GRID GENERATION

For hypersonic flow about blunt bodies (Fig. 2.3), the temperature,

pressure and density of the flow increases almost explosively across

shock wave. At the same time, curved shock waves are close to the

body, Numerical simulations of this phenomena have been a great

challenge to computational fluid dynamics researchers. Presently, there

is a great deal of interest in i_.proving the quality of numerical

simulation techniques and grid adaption is one way to achieve this goal._

As stated earlier, grid generation is the first step in the

numerical solutions of partial differential equations for complex

geometric domains. Baslcally, grid generation is the creation of

boundary-fitted curvilinear coordinates. The second step is the

construction of difference equations for the partial differential

equations. It is apparent that the accuracy of finite difference

solutions depends on the fineness of the grid. Therefore, the finer the

grid, the more accurate the numerical solution will be. Also, the

accuracy of solutions depends on the resolution of the solution

gradient. The presence of large gradients causes the error to be large

in the difference approximation of derivatives. In the presence of a

shock wave, more artificial diffusion must be adde_ to retain adequate

smoothness of the solutions. Therefore, there is a need for schemes that

can resolve large gradients without adding additional grid points. An
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adaptive schememoves the grid points to regions of high gradients, when

the locations of these gradients are not known a priori. Also, an

adaptive method reduces the total number of grid points required to

achieve a given accuracy, but it requires more computer time. In some

instances, the computer time makes this method impractical. The ideas

used in the construction of adaptive grid techniques are limited only by

one's imagination; and any schemethat works in the sense of providing a

better solution is a good one. The ultimate answer to numerical

solutions of partial differential equations may well be to dynamically

adapt grids, rather than to devise more elaborate difference

representations and solution methods [11, 18].

6.1 Literature Survey

Adaptive methods have been used in the solutions of ordinary

differential equations. In order to control the local truncation error

[19], variable-step initial-value problems are solved by adjusting the

step size as the integration advances. Adaptive methods have also been

implemented for solving equations of motion in conjunction with the

method of lines [20]. In this case, the time step is automatically

adjusted to control local error. Similarly, adaptive methods have been

used to solve boundary value problems [21-26]. An optimal grid for a

two-point boundary value problem can be determined either implicitly or

explicitly. In the implicit approach, the weight function depends upon

the solution. As a result the original boundary value problem is

converted into an augmentedsystem in which the dependent variables and

the grid are computed simultaneously. In the explicit approach, the

weight function does not depend on the solution. Instead, it depends
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upon a previously calculated solution. In the implicit approach, a

nonlinear two-point boundary value problem should be solved even for a

linear problem. Implicit techniques do not preserve the linear/non-

linear character of the original problem. Moreover, even for the

nonlinear problem, the augmented system is usually more difficult to

solve than the original problem. On the other hand, the explicit

technique preserves the linear/nonlinear character of the original two-

point boundary value problem.

Adaptive schemes are divided into two basic categories:

differential and algebraic. Differential methods are based on a

variational approach. Brackbill and Saltzman [27-30] have developed a

technique for constructing adaptive grids using a variational approach.

In their scheme,a function which contains a _easure of grid smoothness,

orthogonality and volume variation is minimized by using a variational

principle. The smoothest grid can be generated by solutions of Laplace

equations which are better known as elliptic systems [31-32]. This

approach ignores the effects of orthogonality, and it is very slow.

This method has been modified for better efficiency by dropping the

second derivative terms in one coordinate direction [33]. This makes

the equations parabolic, therefore they can be solved by a marching

technique. A method which considers the orthogonality and volume

variation has been developed by Steger and Sorenson [34]. This method

is widely knownas the hyperbolic method, and it can be solved by a _lon-

iterative marching technique. The variational approach provides a solid

mathematical basis for the adaptive methods, but the Euler-Lagrange

equations must be solved in addition to the original governing

differential equations. On the other hand, an algebraic method requires

much less computational effort, but the grid may not be smooth.
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Rai and Anderson [35-40] have developed an algebraic technique

where the grid movementis governed by estimates of the local error in

the numerical solution. This is achieved by requiring the points in the

large error regions to attract other points and points in the low error

region to repel other points. Nakahashi and Deiwert [41] have formu-

lated an algebraic method which is based on the variational principle.

To reduce the overall solution error, a spring analogy is used to

redistribute the grid points. In this case, operator-splitting and one-

sided controls for the orthogonality and smoothnessare used to make the

method practical, robust and efficient. Dwyer [42-45] has used an

adaptive method in which the points are moved along one set of the

original coordinate lines in response to the evolving gradients in the

physical solution. The analysis shows that the percentage change in a

dependent variable can be determined a priori. Improvement in speed by

an order of magnitude is obtained, but some problems with excessive

skewnessare encountered.

Generally, dynamic adaption can be performed in two ways. One is

to keep the computational space fixed and include the grid speed in the

flow field equations. This is an ideal method to use for unsteady flow.

The second way is to set the grid speed equal to zero and interpolate

the solution onto the new grid after each adaption. The first way is an

ideal method to use in unsteady flow while the second way is equivalent

to solving a sequence of boundary-value problems and is an economical

way to treat steady flows where solutions are approached asymptotically.

In the second approach it is generally sufficient to adapt just a few

times during the course of the computation. In this approach, the grid

distribution at time N+I is determined from time N. Dwyer adapts the
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grid points after each integration step or after a selected number of

steps [42]. However, the grid speed can be obtained by postulating a

law governing it which is based on some solution properties. These

equations can be integrated with the governing partial differential

equations to yield the new grid distribution [46]. The advantage of

this technique is that the location of grid points and grid speed are

time accurate.

The literature survey indicates that most techniques adapt to just

one variable. This means that the weight function is based on the

solution of one variable only. However, the solutions of equations of

motion produce several dependent variables. Viscous-hypersonic flow

over a blunt-body has large gradients in pressure, velocity, etc. in

different parts of the flow field. For instance, there is a large

gradient in pressure near the shock region, and at the same time there

is a large gradient in velocity near the solid body. Therefore, there

is a need for the development of an efficient grid adaption method which

utilizes several variables simultaneously.

6.2 Methods of Grid Adaption

Onereason to use grid adaption is to minimize the error over some

domain by rearranging the grid. Calculus of variations can be used to

perform this minimization. In general, a weighted integral, which is a

measure of some grid or solution property over some domain, can be

expressed as

I = f Wd ¥, (6.1)
¥
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where W is the weight function to be minimized. The selection of Wmay

vary from problem to problem. There is a collection of definitions for

W in [i]. The weight function can be based on grid properties such as

cell-volume, the average of the square of diagonal lengths, the cell

area/volume ratio and cell skewness [33]. There exists a differential

equation which mini_izes the integral I in Eq. (6.1).

equation is called the Euler-Lagrange equation [47].

equation can be found in [27-30].

This differential

The Euler-Lagrange

6.3 Multidimensional Grid Adaption

Brackbill and Saltzman [27-30] have developed a technique based on

a variational approach. In their scheme, a function which contains

measures of grid smoothness, orthogonality, and volume variation is

minimized. To maximize the smoothness of the grid, the following

integral must be minimized

3

Is : f z V _i , V _i dN . (6.2)
i:1

This is simply the sum of the squares of cell-edge lengths. Similarly,

orthogonality can be acquired by minimizing the integral Io

I = f (V {i , V _j)2 dV , (6.3)
o ¥

with (i,j,k) cyclic. This integral vanishes for an orthogonal grid.

The concentration or cell-volume variation can be obtained by minimizing

the integral

Iw : _ W J dW , (6.4)
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where W is a specified weight function. This causes the cells to be

small where the weight function is large. The grid generation system

which provides smoothness, orthogonality and concentration is obtained

by minimizing the total integral I which is a linear combination of I S j

Io and Iw

I = Is + _'o Io + _w lw " (6.5)

The competing features such as smoothness, orthogonality, and cell

volume variation can be stressed by the proper choice of the coeffi-

cients Xo and Xw. For example, a large Xo will result in a nearly

orthogonal grid at the cost of the smoothness and the concentration.

The Euler-Lagrange equations for the sums of those individual integrals

form the system of partial differential equations from which the

coordinate system is generated. The equations are quasi-linear, second-

order partial differential equations with coefficients which are

quadratic functions of the first derivatives [29]. This variational

formulation is equivalent to Winslow's method [31] where Xo and }'w are

set equal to zero. The Euler equations are those given by Winslow, and

their solution maximizes the smoothness. This is also used by Thompson

et al. [32]. The additional terms alter other characteristics of the

mapping in a similar way. The cell-size variation and skewness can be

controlled by proper selection of Is, Io and Iw. The use of a

variational approach provides a solid mathematical basis for grid

adaption. But, the Euler-Lagrange equations must" be solved in addition

to the governing equations of fluid motion. For further information,

readers are refered to excellent articles by Thompson [11, 18].

44



6.4 One-Dimensional Grid Adaption

The Euler-Lagrange equation Eq. (6.5), is general and capable of

adapting grids simultaneously in multiple dimensions. Whenthe solution

varies predominately in a single direction, one-dimensional adaption can

be applied with the grid points constrained to movealong one family of

fixed curvilinear coordinate lines. The fixed family of lines is

established by generating a full multidimensional grid using any

standard grid generation technique. The points generated for the

initial grid together with some interpolation procedure, e.g., cubic or

linear interpolation, serve to define the fixed lines along which the

grid points will move during the adaption. This is done explicitly,

therefore there is no need to solve any differential equations.

A technique called equidistribution is developed to improve the

solutions of boundary value problems [21-26]. This technique has proven

to be effective and efficient. This technique is used to minimize the

error by redistributing grid points such that a weight function is

constant over each interval. The Euler-Lagrange equation is

x{ W = constant .

This minimizes the following integral

(6.6)

1

11 : fO W({) xC2 d{ .
(6.7)

Equation (6.7) represents the energy of a system of springs with the

spring constant W(_), spanning each grid interval. The weight

function is associated with the grid points themselves and not with
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their locations.

x, instead of _,

the grid points.

An alternative viewpoint results from integrating over

i.e., summingover the grid intervals rather than over

This can be expressed as

2
I {x

12 : f .
0

The Euler-Lagrange equation for this formulation is given by Eq. (6.6).

_x is considered to represent the point density. This variational

problem represents a minimization over the density of the grid points

subjected to a weight function. This can produce smooth grid distribu-

tions. Here the weight function W(x) is associated with the location of

grid points. If the weight function is associated with the grid points

themselves rather than their locations, W = W({). Equation (6.6) is

the Euler equation for the following integral

=fl {x 2
13 [_] d_ (6.9)

0

where _ is a measure of the smoothness of the grid distribution, with

the emphasis placed on smoothness in certain regions. This is inversely

proportional to the weight function W(_). Equation (6.6) is the Euler-

Lagrange equation for the integrals in Eqs. (6.7-6.9) which can be

written as

_(x) : f W(t) dt . (6.10)
0

Equation (6.10) can be written in terms of arc length as

S

{(s) : f W(t) dt . (6.11)

0
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The weight function is used to reduce the grid point spacing where W is

large, and the weight function should be some measure of the error.

White [26] has suggested the following form of the weight function

I/2m
w= [= + lU(m)12] , (6.12)

where _ is constant. With m:l and _:0, this becomes

w: lull. (6.13)

A combination of this equation and Eq. (6.6) yields,

U{ = Constant . (6.14)

This choice replaces the grid points so that the same change in the

solution occurs at each grid interval. This is simply the solution

gradient. Taking n=l and _=I yields

w : Vl+ JUxl2 . (6.15a)

Combination of Eq.(6.15a) and Eq. (6.6) results in

Vx{2 + U_2 : St : Constant . (6.15b)

This produces a uniform distribution of arc lengths on the solution

curve. White's results [25] indicated that the arc length form is

favored. The disadvantage of this method is that the weight function

near the extreme solution, i.e. Ux=O locally, is treated as a flat

region. Concentration near the solution extreme can be achieved by

incorporating some effect of the second derivative (Uxx) into the

weight function [42] such as
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W= i + _ f(U x) + _ g(Uxx) , (6.16a)

where _ and _ are positive

rewritten in normalized form as

parameters. Equation (6.10) can be

X

f W(t) dt

0 (6.16b)
: 1

W(t) dt
0

With the second derivative terms included, the value of _ must be

continually updated to keep the same relational emphasis or concentra-

tion. Therefore, a system of two equations and two unknowns must be

solved for each fixed grid line [43-45]. It will be shown later that

through the reformulation of Eq. (6.16b), the parameter can be found

directly or the matrix inversion can be entirely avoided.

6.5 One-Dimensional Grid Adaption With Several Variables

Flow equation solutions consist of several variables. Therefore,

the weight function should also be a function of more than one variable.

It is desirable to devise a scheme in which grid points can adapt to

several variables with control of the magnitude of adaption for each

variable. In the case of high-speed flow, velocity has large gradients

in some regions where pressure is constant or vice versa. In general,

the weight function can be expressed as

N

W = I + z bi f. (6.17)
i=i I

where N is the number of variables, bi are constants, fi are variables

or their derivatives, and 1 is for uniformity. A substitution of Eq.

(6.17) into Eq. (6.16b) results in
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-

N

S + E b i F i (S)
4=i
N

Sma x + E bi Fi (Smax)
i=1

(6.18)

where S

Fi (S)= f fi (t)dt .
0

It should be noted that Eq. (6.18) is for adapting along a fixed grid

line. To ensure that _(S) increases monotonically, bi and fi should be

positive. In order to keep the same relative emphasis of the concen-

tration along each grid line, bi should be computed based on some

percentage of the grid points being allocated to each variable. The

percentage of grid points assigned to a particular function fi can be

expressed as

R. - bj Fj (Smax) , j=I,2,...,N . (6.19)
j N

Sma x + r. b i F i (Smax)
i=l

Rearranging this equation results in

[Aji] {b j} : {c j} ,
(6.20)

where

Fi (Smax )

Aji = Rj Fj (Smax}
iej

= Rj - 1 i = j, cj = - Rj Smax/F j (Smax) .

Therefore, a system of N equations and N unknowns must be solved for

each fixed grid line (N is the number of variables). This can be

avoided by the reformulation of Eq. (6.18). The crucial steps are

outlined here. Equation (6.19) can be rewritten as
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R. N
J

bj :Fj (Smaxl [Smax + 7' bi Fi (Sma• i=i x
)]. (6.21)

A substitution of Eq. (6.21) into Eq. (6.18) results in

where

N Ri Fi(S)

S + Wma x i- Smax_ZI Fi( )
=

N

Sma x + Wma x 7' R.
i=I i

N

Wma x = [Smax + _
i=I

bi Fi (Smax) ] •

(6.22)

A summation of Eq. (6.19) over all j values yields

N

7' R. -

j=l J

N

7' bj Fj (Smax)
j:1

N

Sma x + 7 bi Fi )i=I (Smax

(6.23)

Rearrangement of Eq. (6.23) results in

N

7' bi Fi (Smax) -
i=l

N

Smax i--_I Ri

N

I- ): R.
i:l I

(6.24)

A substitution of Eq. (6.24) into Eq. (6.22) yields

{(s) -
S N N Fi(S)

[i- 7 R ]+ 7 R
_Jmax i:l i i:1 i _i(Smax} "

(6.25)
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This reformulation avoids the need for continuous updating the bi's to

keep the same relative emphasis on concentration. Applying this

equation, grid points can be adapted with more than one variable without

any need for matrix inversions. Eiseman [48] proposed a very similar

approach but did not elaborate on this.

Presently, Eq. (6.18) is approximated by a trapezoidal rule. For

unequally-spaced data, this can be written as

S JL

Fi(S) = f fi(t) dt =_ z
0 j=1

[(tj_ I + tj) (fi(tj) - fi(tj
- i)) ,

where

Fi(O) = 0 .

In the initial stages of the solutions, there exist large oscilla-

tions in the flow and _fluid properties. Consequently, the adapted grid

will have these oscillations as well. In order to have a smooth grid,

these oscillations can be smoothed out with the following filter

-n+1 Fn Fn _n _n F_
r'kj : ( jk + j+l,k + j-l,k + j,k-1 + ,k+1)/5 , (6.25a)J

where

: (y,z) T .

This is equivalent to the Lapalace filter which can be expressed as

_2r _2r =

+ o (62Sb)

This slightly reduces the effect of adaption, but it filters out low

frequency oscillations.
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In somephysical phenomenalike shocks, the length of discontinuity

is of the order of molecule size. If the weight function contains the

derivatives with respect to physical coordinates, the adapted grid tends

to have a very small spacing. This can be corrected by reducing the

effect of the weight functions near the discontinuities. Therefore, the

weight functions (fi) can be multiplied by the following function

AS

(I - e mln)

where ASmi n is some allowable minimum spacing. This function varies

from zero to one and is proportional to the spacing. Also, this can be

corrected by replacing the derivatives of physical coordinates with the

derivatives of the computational coordinates.

After the new adapted grid has been created, the solutions are

interpolated into the new grid distribution. Presently, a piece-wise

linear spline has been used. However, this may create some problems in

the case of unsteady flow. Either higher order interoplation should be

used or the time derivatives of the grid point should be incorporated

into transformed governing equations.
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Chapter 7

RESULTS AND DISCUSSION

In previous experiments [9], the surface oil-flow patterns over the

Butler wing at various angles of attack and at Mach number 3.5 show no

signs of transition and the nature of the oil streak lines is typical of

a laminar flow. Therefore, results are obtained only for laminar flow

over a Butler wing at a _ch number of 3.5, Reynolds number of 2xi06

(based on chord length), free stream static temperature of 390°R

(216.67°K), wall temperature of 1092°R (606.67°K), length of 0.80 ft

(0.2438 m), specific heat ratio --- of 1.4, specific heat at a constant

volume of 4290 (ft/sec)2/R, and at zero and ten degrees angle of attack.

In this study, a two boundary grid generation (TBGG) technique [13] is

used. This method is essentially an algebraic method. The application

of the TBGG method requires that the entire body be sliced into

different cross sections. These cross sections are obtained in the

stream-wise direction by analytical descriptions of the wing surface,

(Eqs. 2.1a-2.1c). Then, two types of grid are generated for this wing;

the H-type and O-type. Then, results of both cases are compared and

discussed.

7.1 H-Type Grid

In this case, the entire flow field is sliced into fifty-five

stations in the stream-wise direction, and each station has 64x36 grid

points (Fig. 7.1). There is a total of 126,720 grid points which take
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Fig. 7.1 H-type grid for a Butler wing
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Fig. 7.1 Continued
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Fig. 7.1 Continued
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2.8 million 32-bit words of primary memory (16 variables). The required

computational time is 1.9x10 -5 sec/gri d-poi nt/i tera tion (2.5

sec/iteration) which is typical for a CYBER 205 with two pipes. Results

are obtained for zero angle of attack. The computed pressures are

plotted in (Figs. 7.2a-7.2c). The pressure coefficient along the center

line is shown in Fig. 7.2a. The results are compared with available

experimental and numerical results [6-9]. The results on the center

line are in excellent agreement with the experimental and previously

obtained numerical results (Refs. 6-9). At 41.66% and 68.33% chordwise

position, the pressure ratios are plotted against the conical span-wise

coordinates y/xtan(O), (Figs. 7.2b-7.2c). They are in good agreement

with experimental and numerical results. However, there are some

discrepancies in the results between 30 ° and 60 °. This is probably due

to the fact that grid lines are not orthogonal near those regions and

this may be a direct consequence of the H-type grid. Also in this case,

the wing's leading edges are represented by a jagged-line, in other

words grid lines are not along the leading edges of the wing. This does

not allow us to compute the boundary conditions using a second-order

accurate formula. Therefore solutions are not second-order accurate

near solid boundaries.

7.2 O-Type Grid

For this case, the physical domain is limited to 5% to 95% of the

wing. This is done to avoid any singularities. The conical Navier-

Stokes solutions are enforced for the upstream boundary which is located

at 5% of the wing. This solution is obtained by the integration of the

Navier-Stokes equations [16] for a conical grid with proper boundary
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conditions. The wing is sliced into forty-one stations in the stream-

wise direction, and each station has 41x127 grid points (Fig. 7.3).

There is a total of 213,487 grid points which take 4.7 million 32-bit

words of primary memory. Results are obtained for zero and ten degrees

angle of attack.

Results for zero angle of attack are compared with results obtained

with the O-type grid, with results from the experiments and other

numerical results [6-9]. lhe computed pressure is plotted in Figs.

7.4a-7.4c. The pressure coefficient along the center line (Fig. 7.4a)

is in good agreement with other numerical and experimental results.

Nevertheless, there is some discrepancy near the nose region. This may

be due to the fact that the upstream solutions are based on the conical

solutions. But, these solutions match exactly with results from H-type

grids. This is because the grid topology near the center line is the

same for both grid types. At 41.67% and 68.33% chordwise positions, the

pressure ratio is plotted against the conical span-wise coordinates

y/xtan(e). They are in excellent agreement with experimental and

numerical results (Figs. 7.4b, 7.4c). In addition they are much closer

to the experimental results compared to the results obtained from the H-

type grid. This _y be due to good grid orthogonality in the case of an

O-type grid, and the wing's leading edges are represented by a straight

line. On the thick sections near the nose the pressure is highest on

the centerline and falls toward the leading edge. Figure 7.4d shows the

cross-flow velocity at 5%, 23%, 41%, 59%, 77% and 95%.

The results for ten degrees angle of attack are compared with

experimental results. The computed pressure is plotted in Figs. 7.5a-

7.5d. At 17%, 30%, 50% and 70% chordwise positions, the pressure ratio
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Fig. 7.3 O-type grid for a Butler wing
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Fig. 7.3 Continued
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Fig. 7.3 Continued
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Fig. 7.4d Continued
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Fig. 7.4e Streak lines (zero angle of attack)
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is plotted against the conical spanwise coordinate y/xtan(O). They are

in good agreement with experimental and numerical results (Figs. 7.5a-

7.5d). As in the previous case, on the thick sections near the nose the

pressure is highest on the centerline and falls toward the leading edge,

whereas near the trailing edge the spanwise distribution is more "wing

like" with the maximum pressure at the leading edge. The change-over is

shown by the pressure peaks in the pressure distributions at x/c=O.5 and

0.7 at 10 degrees angle of attack. There are some discrepancies near

x/c=30%-50%; this may be due to the fact that Squire [9] has not used

the exact model of the Butler wing. In order to mount the model in the

wind tunnel, the lower surface is distorted to include a sting

support. Figure 7.5e shows the cross-flow velocity at 5%, 23%, 41%,

59%, 77% and 95%. These figures show a weak cross-wise separation on

the suction side which is confined to the body. At 59%, the cross flow

has separated but a well-defined vortex is not visible. Squire [7] has

performed a series of tests to investigate the effects of thickness on

the longitudinal characteristics of a delta wing with different aspect

ratios. The tests on the thick symmetrical delta wings have confirmed

that the lift curve slope decreases as the thickness increases. This

loss of lift is associated with a weaker vortex system giving less

nonlinear lift. Squire [9] also observed a pair of vortices at the

trailing edges, but there was no sign of any span-wise flow outboard of

these vortices. The Butler wing has a round leading edge for most of

its length, and previous numerical experiments have indicated that flow-

field solutions are inconsistent using both the Euler and the Navier-

Stokes equations for this type of geometry [49]. The problem appears to

be the determination of the initial location of separation over the
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Fig. 7.5f Streak lines (ten degree angle of attack)
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Fig. 7.5f Streak lines (ten degree angle of attack)
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suction side. If the leading edge is sharp, there is no problem since

the separation line is along the leading edge. For a rounded leading-

edge, the separation point is not defined uniquely because the numerical

dissipation influences where the separation point occurs [49]. The

leading-edge separation for the rounded-edge may be a numerical

phenomenon. It is possible that this problem of uniqueness occurs in

this study as it does with all other numerical experiments, having

rounded leading edge and artificial dissipation applied in the solution

technique.

The question has been raised concerning the application of the

Navier-Stokes equations in a flow field study when only the pressure

solution and streak lines are compared with experimental data. It is

argued that the solution of the Euler equations would produce the same

information with a high degree of accuracy. This is a legitimate

argument if the sole purpose of the study is to collect inviscid

information. However, we believe that the solution of the Navier-Stokes

equations provides considerably more information if there are enough

grid points in the proper locations. Also, the solution of the Navier-

Stokes equations provides experience for the future when computer speed

will be fast enough to handle the large number of grid points.

7.3 Static Grid Adaption

The second part of this study concentrates on finite-difference

methods in which the grid points adapt to the solution dynamically to

obtain an accurate solution for hypersonic flow. A computer program has

been written to utilize Eq. (6.25) for grid adaption. Presently, this

code is being run on the Network Operating System (NOS) and the Vector
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Processing System (VPS-32) at NASALangley Research Center. Hypersonic

flow over a blunt nose is a typical test case in computational fluid

dynamics. This problem has a detached shock which should be resolved

accurately, and the location and the magnitude of the shock are not

knowna priori. The grid should adapt as the solution progresses. This

problem is used to analyze and verify the adaptive method. The

equations of motion are solved by the MacCormackmethod [12-13] for

hypersonic flow over a small-radius blunt-body with the inclined-plate

afterbody (Fig. 2.3). The blunt leading edge is a part of the panel

holder which has been tested at the Langley Research Center [50]. The

results are obtained at the following conditions: free stream Mach

number of 6.S, a pressure of 9.26 Ib/ft 2 velocity of 6510 ft/sec
, m

temperature of 375°R (static temperature), Reynolds number of 220,000,

specific heat ratio of 1.38, universal gas constant of 1771 ft2/sec2/R

and a wall temperature of 540 ° Rankine.

Two tests have been performed: static adaption and dynamic

adaption. For static adaption, the solution has been obtained with the

fixed grid points shown in Fig. (7.6). Then, the grid points are

adapted to two variables, the first and the second derivatives of

pressure. Results are shown in Fig. (7.7). In this case, twenty

percent of the grid points are allocated to first and second derivatives

of pressure (R1=R2=20_). For the same case, Fig. (7.8) shows adaption

with RI=R2=50%. In this case, all the grid points are allocated to the

first and the second derivatives of the pressure. This explains the

large voids in the constant pressure regions. Figures 7.7-7.8 lack grid

resolution in the vicinity of the solid boundaries. This is due to the

constant pressure near the solid boundaries. But Eq. (6.25) can adapt
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Fig. 7.6 Initial grid distribution
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Fig. 7.7 Adapted grid (RI=R2=20%)
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Fig. 7.8 Adapted grid (RI=R2=50%)
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to several variables. Figure 7.9 shows the grid points which are

adapted to two variables --- pressure and velocity. The weight function

consists of the first derivatives of pressure, the velocity and the

second derivative of pressure. Twenty percent of the grid points are

allocated to each function, and forty percent of the grid points are

allocated for uniformity. This avoids the creation of any void. It is

noted that grid points are clustered near the shock and the solid body.

Therefore, it is possible to resolve the pressure as well as the

velocity gradients in the boundary layer region. In Fig. (7.10), thirty

percent of grid points are allocated to the first derivative of Mach

number. If there was a chemical reaction in process, some of the grid

points could have been allocated for resolving the gradients of the

chemical species.

7.4 Dynamic Grid Adaption

The above procedure has been applied dynamically to the same

problem. Figure 15a shows the initial grid distribution for this

problem. Figure 7.11 shows sequences of grid distributions at a

different time. In this case, grid points are adapted to six variables:

the first and second derivatives of pressure, Mach number and

velocity. Ten percent of the grid points are allocated equally to first

derivatives, and five percent of the grid points are allocated to their

second derivatives. Fifty-five percent of the grid points are also

allocated to the uniformity. A movie has been produced of this work

which shows the dynamic adaption. A few frames are shown in Fig.

(7.12). They demonstrate how grid points are attracted toward high

gradient regions and repelled from low gradient regions.
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Fig. 7.9 Adapted grid (RI=R2=R3=20%)
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Fig. 7.10 Adapted grid (R5=30%)
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Fig. 7.11 Adapted grid (Dynamic)
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Fig. 7.11 Continued

97



P_

Fig. 7.11 Continued

98



Fig. 7.11 Continued
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Chapter 8

CONCLUDING REMARKS

General formulations are presented to investigate the flow field

over complex configurations for high-speed free stream conditions. An

advanced algebraic method is used to generate grids around these

configurations. The computational procedure developed is applied to

investigate the flow field over a Butler wing. Illustrative results

obtained for specified free stream conditions compare very well with

available experimental and numerical results. Results are obtained for

laminar flow over a Butler wing at a Mach number of 3.5, Reynolds number

of 2xlO6/ft (6.56x106/m), free static temperature of 390°R (216.67°K),

wall temperature of I092°R (606.67°K), length of 0.80 ft (0.2438 m) when

the wing is at zero and ten de_rees angle of attack. Two types of grids

have been generated for this wing; H-type and O-type. Results of both

cases are co_._paredand discussed. The future plans to extend this study

are to include the sting, use multiple grid, different Mach numbers, and

to include turbulence.

A grid adaption method has been developed with the capability of

adapting grid points to several variables. This method is an algebraic

method, and has been formulated in such a way that there is no need for

any matrix inversion. The method is used in conjunction with the

calculation of hypersonic flow over a blunt-nose body. A movie has been

produced which shows simultaneously the transient behavior of the
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solution and the grid adaption. The results indicate the viability and

validity of the proposed method. The future plans for this technique

are to use this problem with a true unsteady problem, to study the

effect of interpolation, to consider more complex geometries and finally

to adapt the problem in three-dimensions.
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APPENDIX A

MATHEMATICAL DETAILS FOR THE TRANSFORMED EQUATIONS

A.1 Curvilinear Coordinates

In covariant coordinates system (xi), the position vector of a

point from the origin is expressed as

: ei xi = eI xI + e2 x2 + e3 x3 (A.1)

where ei is the covariant base vector.

In the present study, covariant coordinates are labeled as x, y,

and z (i, J, k) and contravariant coordinates are labeled as _, q and

(i, j, k). The covariant base vectors are defined as

or

eI
e2

e3
x{ y_ z{l

: x Yn z

x_ y{ z_

: [j-1]T (A.2)

where J is the Jacobian of transformation. Magnitude of Jacobian (IJl)

is the local value of the ratio of an elemental volume in the mapped

(usually cube) cell to the corresponding elemental volume in the

physical (usually distorted) cell.
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or

The contravariant base vectors are defined as

i
i _x

e :
-- _X.

1

elI I ze2 : _x _y Tlz

e3 _x _y _z

: [j] 3 (A.3)

Position vector can be expressed explicitly in terms of

contravariant vector (xi); however, the infinitesimal vector dr can be

expressed as

dr = _.._rd xi : ei dxi (A.4)
_X 1

Also the magnitude of arclength (ds) can be expressed as

(ds) 2 : dr • dr (A.5)

Substitution of Eq. A.4 into Eq. A.5 will result in

ds2 = (ei • ej) dxi dxj = gij dxi dxj (A.6)

where gij is called covariant fundamental metric coefficients.

These coefficients can be defined as

-I]T [j-i] :_ , BXk
gij = [d

_xI _xJ
(A.7)

They are defined as

gll = x_ + y_ + z_ , (A.8a)

g12 = g21 = x{ x_ + y{ y_ + z{ z ,
(A.8b)
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g13 : g31 = x_ x_ + y{y_ + z{ z_ , (A.Sc)

= x2 + 2 + z2 (A.Sd)
g22 _ Y_ _ '

g23 : g32 : x x_ + y_ y_ + z z_ ,
(A.8e)

2 + 2 + 2 (A.8f)
g33 = x_ y_ z_ .

Similarly, contravariant fundamental metric coefficients are defined as

• °

gij = ei , ej = [j] [j]T _xI . _)xJ (A.9)

or

g11 2 2 + 2
= _x + _y _z '

g21 : g12 = {x _x + {y _y + _z _z '

g13 = g31 = _x _x + {y _y + _z _z '

22 2 2 2

g : _x + _y + qz '

g23 = g32 = _x _x + _y _y + _z _z '

g33 2 2 + 2
= _x + _y _z "

(A.lOa)

(A.lOb)

(A.10c)

(A.lOd)

(A.10e )

(A.lOf)

Furthermore, there exists a unique relationship between contra-

variant and covariant fundamental metric coefficients,

where

ij grs gas - grt g_s _ .GIj Cofactor of gij

g - Igijl - Ig jl '

G11 = g22 g33 - g_3 '

(A.II)

(A.12a)

G12 : G21 : g13 g23 - g12 g33 '
(A.12b)
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G13 : G31 = °12 g23 - g13 g22 '

2
G22 : gll g33 - g13 '

(A.12c )

(A.12d)

G23 = G32 = -°12 g13 - g23 gll '

2
G33 = gll g22 - g12 '

(A.12e)

(A.12f)

where

ij
GiJ Cofactor of g

giJ-ig_J I igiJl

There is also a relationship between covariant and contravariant base

vector

where

i _ej XEk
e

- igiji_/2 '

IgijI=IJ-II2

(A.13)

ioe,

or

where

el=
(y z_-y_z ) i - (x z_-x_z ) j + (x y_-x_y_) k

I_-_I

I (y_z_-y_z)

-(y{z_-y_z{)

(y_z-Yn z{)

-(x z_-x_z )

(xSz_-x_z{)

-(xsz-x z_)
(x y_-x_y_)l

-(x{y_-x_y_) ,

(x{y_-x y{)

J:e i .

(A.14)
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There is also a relationship between contravariant and covariant base

vector

e i =

ej x ek
D

where

IgiJl_-jjl2, (A.15)

ioeo

I- I

(_y_z-_zny )

or from Eq. (A.2)

-(_x_z-_z_x)

({x _z-{z _x)

-({x_z- _z_x )

(_ix_y__y_x) 1
-(_x_y-{y_x) ,

({x_y- {y_x )

(A.16a)

[j-l] : [eI e2
x_ x x_I

e3] T = Y{ Yn Y_ ,

z{ z zc)

(qy_z _ z_y )

(_x_z-nz_x)

(_x_y_y_ x)

-(_y_z-_z_y)

({x_z-{z_x)

-({x_y-{y_ x)

(_y_ z-{z_ly)

-({x_z-_znx )

({x_y- _y_ x)

/Ioi • (A.1O_)

The relationship between vector bases can be obtained also by matrix

algebra. From basic matrix identity, Jacobian can be written as

T

Transpose of cofactor [j-l] [[j-I]*]
[j] = [j-l] = - (A.17)

Ij-iI lj -I ) "
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Equation (A.17) is the same as Eq. (A.14). There also exists an inverse

relation for Eq. (A.17).

A.2 Vector Representation in Curvilinear Coordinates

A vector F(Fxi, Fyj, Fzk) can be expressed in contravarient

coordinates as

Fi = (gii)I/2 Fi .

This is a projection of Fi on xi coordinate

Fi Fi ei

where fell

Jell Fi _x 1 bx 1 bx 1
:_-R-Fx +_-_-Fy +_-_--F z .

(A.18)

(A.19)

Equation (A.19) can be expressed as

_x _y {z

)F_/(g22 )I/2 = _x _z_y

[F_/(g33 )I/2 _x _y _z
IFxIFy =

Fz

Fx[J] Fy
(A.20)

where gij is defined in Eq. (A.8).

The inverse relation to Eq. (A.20) is

iiilF111Cg2_/2)

F¢/Cg3_/2)

(A.21)
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For example, the velocity vector in covariant coordinates can be written

as

l u I [j]-1
V _"

W

V/(g2_/2)

W/(g3_/2)

(A.22a)

Also, the velocity vector in contravariant coordinates can be expressed

as

iuig11i121I!
V/Cg22 I/2 : [J]
W/Cg33 )I/2

(A.22b)

where u and U are velocities in the covariant and the contravariant

coordinate systems, respectively.

A.3 Normal Derivative in Curvilinear Coordinates

A normal derivative of a scalar variable (A) can be computed as

where

i

(_nA) : n • v A (A. 23a )

= VS e. e.- = 1 _ 1

n _ _T (gii)i/2 '
(A.23b)

vA = Ax_ + Ayj ÷ AzR (A.23C)
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or

AxiiAy j : [j]T

Az k

Aq .

A_

(A. 24a )

Equation (A.23a) can be written as

bA I = [d_x 4,y chz] [j]T

l 2)I/2_-6 constant _b (_x2+ _by2+_bz

For a constant _, Eq. (A.24b) can be written as

A_

A_1

A_

(A.24b)

I gll A{ + g12 A + g13 A_
aA :

(A.25a)

For a constant Tl, Eq. (A.24b) can be written as

I g21 A{ + g22 A + g23 A(
aA =

_I (g22)'1/2
(A.25b)

For a constant {, Eq. (A.24b) can be written as

I g31 A{ + g32 A + g33 A_
_)A :

_ (l_3) 1_
(A.25c)
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also

e,_,

i 3
i : e..__, v A_ I Z

3

i gij _LA
_X I '

(gii)1/2 j=1

(ei . ej) Aj
l

(A.26)

= 1 [gll A_ + g12 + g13
(A)n ig11)llZ A A_] .

(A.27)

This equation is similar to Eq. (A.25a).

A.4 Miscellaneous Relations

The angle between two grid lines is given by

ei • ejj

cos eij = jeij jejl ,

gij

cos Oij = [IgiilIIlgjjl]'112"
(A.28)

Therefore, for the orthogonal grid, the following should be true,

gij : 0 for i _ j .
(A.29)

Arclength is defined as

(ds)2 3 3
= _ _ gij dxl dxj "

i=I j=1

(A.3Oa)

An arclength along xi coordinate is defined as

(ds)i = (gii)I/2 dx i .
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The area of an element on which the xi constant is defined as

(dr i : lej d xj • _-k d xkl : (gij) dxi dx j , (A.31)

e,g°

dr_ le2_ xe3 d_J=_d_ d_- _= ; d_d_, (A.32a)

dF_I : G22 d_ d_ =_ d_ d_ , (A.32b)

dI_ : ¢_33 d_ dq :-_j- d_ d_ .

The volume of an element is defined as

dV _(x,y,z) j-i: d(_,_,=) : I I d_ d_ _:

: lel • (e2xe3) I d_ dq d_ : (Igijl) I/2 d_ d_ d_ . (A.33)
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APPENDIX B

TIME-STEP ANALYSIS

In order to analyze the governing equations, they can be divided

into two parts: inviscid and viscous. This makes the task of analyzing

much simpler. However, this is another assumption which may impair the

results.

6.I Inviscid Part

For the inviscid part, the governing equations can be written as

Pt + v • (pu) : 0 ,
(B.la)

(pu)t + V • (puu) + (v • P) 6ij = 0 , (B.Ib)

et + V • (ev) + [V • (pu)] 6ij = 0 ,
(B.lc)

P p(u2 + v2 + w2) (B.Id)
e : y_-_r+ 2 '

y p : pc2 . (B.le)

After some algebraic manipulations, Eqs. (B.la)-(B.ld) can be written as

qt + A qx + B qy + C qz = 0
(B.2)

where

q (p, u, v, w, p)T m
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A __

u p 0 0 0

0 u 0 0 I/p
0 0 u 0 0

0 0 0 u 0

0 pc2 0 0 u
v 0

0 v

, B 0 0
0 0

0 0

p
0

V

0

pc2

0

0

I/p
0

V

, iwo o o
0 w 0 0

0 0 w 0 0
C=io 0 0 w Ip "

• 0 0 0 pc2 w

Equation (B.2) can be transformed from physical coordinates to computa-

tional coordinates as

where

Qt + _ q{ + _ qn + Z qc : 0 ,

= A _x + b _y + C _z "

= k _x + B ny + C qz '

= A Cx + B _y + C Cz .

This equation can be split as follows

(B.3)

- n:o,qn+l qn + _ A t{ q_

_ Qn+1 = 0 (B.4)qn+2 qn+1 + _ A tq -n

qn+3 _ qn+2 + _ Atc nn+2_ - 0 .

This splitting is valid and stable if the time-step of each operator

does not exceed the allowable step-size for each operator. It is

consistent if the sum of the time steps for each operator be equal.

This method would be second order accurate if the sequences of the
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operator are symmetric. In order to analyze this equation, finite-

Fourier series can be introduced to monitor the growth and decay of the

error as

q = _ est eik{ . (B.5)

Substituting this equation in Eq. (B.4) results in

_ eikA_ _ _ikA_
esAt I + _ : 0 .

At_ 2AT1

(B.6)

Rearranging and collecting terms, yields the following

At_
esat = [G] = [I - i A(-_,--sin e)] , 0 = k A _ .

The system is stable if the largest eigenvalue is less than unity.

condition insures that the error always decays.

(B.7)

This

IGi < 0 .

Therefore, the determinant of [G] can be set equal to zero

At{
det IX _-_- sin 0 - Xl] = 0 ,

(B.8)

or

Eu-X p_xE p_y E P_z E 0

0 EU-L 0 0 E_x/p

0 0 E_-X 0 E_y/p

0 0 0 Eu-X E_z/p

0 PC_xE pc_yE pc_zE Eu-X

=0,
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where

At_ sine (A_x + B {y + C {z )E=_T

= u _x + v _y + w {z "

The determinant can be written as

(E E- x)3 [(E E- X)2 - 2 + _)] : 0 .E2 c2 ({_ + _y
(B.10)

Equation (B.10) can be solved for X as

At_

)'1,2,3 = AT sinE) [lu _x + v {y + w _zl ] ,
(B.11)

At_ 2 + 2 1/2] .x4,5 : _-"FsinE)[lu_x + v _y + w _zl + c(_ + _y _z)

Consequently, there are five eigenvalues, and the time step is based on

the maximum of them,

2 I/2 "
I u _x + v (y + w _zl + C({x + _ )

(B.12a)

Similar expressions can be found for At and AtE

+v
, (B.12b)

A_

2+ _2z)11z"AtE < Iu _x + v _y + w _zl + C(C + _y

(B.12c)
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B.2 Viscous Part

For the viscous part, the governing equations can be written as

bU + _F _G _H
_ _'_ +_ +-6-£= 0 , (B.13)

where

U _'_

P

pU

pv

pw

pE

, F=

I 0-%XX

-_xy-'_XZ

qx-¢x

G E

0

-_xy

yz

, H=

I 0

-'IXZ 1

Equation (B.13) can be transformed from physical coordinates to

computational coordinates as

F_ F F_ 1
_-_ + [J] G5 G G_

H{ H H_

= 0 . (B.14)

Similar to the previous case, Eq. (B.4) is split into three components.

For example, the { component can be written as

_U

I_ + {x F{ + {y G{ + 5z H5 = 0 .
(B.I5)

After some algebraic manipulation, Eq. (B.15) can be written as

_q + [B] + [C] = 0 ,
Igi_+ [A] q{{ q{_ q{{

(B.16)

where

q

P

U

V

W

P
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[A]

0
0 0

0 (*+_)E"zZ'x (*+_1 _'z_'Y

0
11 0

:g

[B] =

0

(_+P) _x _'z

(_+_1 E,z_.y

( k- _) E.zz+_gI-
i

0

0
0

0 0
12 _&xnz+_znx

0 (x-_)_x_x +_g _x_Y+_'Y_X 12

0 _y_ x+_ x_y (k-_) _Y_Y +_g #_Yn z+_znY 12

0 _zn x+_xn z _znY+_YnZ (x'_) _z_ x+_g
0

0
12 0

:g

0

_bz,x_,y+P_
13

(x-_)_.y_,y+_g

_,zr_y+P_y_,z

0 0

0 (x'_)_xCx +_g13

[C] = 0 _y_x+_xCy

0 _zCx+P&xCy

_g13 0

0

0

0

_3gI

0

@Z,x_iz+#_.zr_x

_&y_ z+_t_y_y
13

0

0

0

_g13

where
k=_.+ _.B

2

_=pB-_J_

ypP _
(_: --- 2

Pr p (y-l)

131



Similar to the Inviscid case, the following finite-Fourier series can be

introduced as

ik1_ ik2_ ik3_
q = q • est • e • e • e . (B.17)

Substitution of Eq. (B.17) into (B.16) results in the following

[G] : [i- X- _- Z] (B.18)

where

OI

4At_ sin2 - sin 01 sin 02 At_
_- TA, _- B

- sin 01 sin 0 2 At_
_: C

a_ A_

01 = kI A_ , 02 = k2 A_ , 03 = k3 A_ .

This system is stable if the largest eigenvalue is less than unity, this

condition insures the decay of error. Therefore, the determinant of [G]

can be set equal to zero as

-X 0 0 0 0

I

0 G22-L G23-X G24-X 0

0 G32-L G33-X G32-X 0

0 G42-X G43-X G44-_ 0

G51-L 0 0 0 G55-X

=0
' (B.19a)

where

Gij = Aij+ Bij + Cij
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or

_(G55-_) [(G22-_) [(G33-X) (G44-X) - (G32-_) (G43-_)]

- (G23-X) [(G32-L) (G44-X) - (G32-X) (G42-L)]

+ (G24-X) [(G32-X) (G43-X) - (G33-X) (G42-X)] ] : 0 . (B.19b)

Equation (B.19b) can be solved for X as

X1 : 0 , X2 = G55 . (B.20)

or

2 01

At{
X2 = 614 sinA__-" gli _ sin 0IA_sin B2 g12 + sin B1A_sin 03 g13] T "

After all algebraic _anipulations, the following are found

2 2+ 2

p pr(Y-1) A_ 2 + I A_ An _Z IIAt_
<

i{x _x + {y _y + {z _z ]-I+ A_ A_ I . (B.21a)

Similar expressions can be found for At and At_

2 2 2

nx + _ly + _z _x nx + +

p Pr(Y-l_ An

+ i_x _x + ny _y + _z _z ]-i
A_ A_ i , (B.21b)
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Y_
p Pr(Y-l)

2 2+ 2
[2 _x + {y _z

A_ 2
+ l_x _x + A__y _yA_+ _Z _Zl

CX _X + _y {y + _Z {Z

+ I _ A_ 131. (B.21c)

Three more eigenvalues need to be computed from Eq. (B.21b) which

requires solution of a nonlinear equation for each point in the

computational space.
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numerical solutions of the Navier-Stokes equations. In the first part of this
study, a general procedure is presented for computation of high-speed flow over
complex three-dimensional configurations. The flow field is simulated on the sur-
face of a Butler wing in a uniform stream. Results are presented for Mach number
3.5 and a Reynolds number of 2,000,000. The 0-type and H-type grids have been
used for this study, and the resu]ts are compared together and with other theoret-
ical and experimental results. The results demonstrate that while the H-type grid
is suitable for the leading and trailing edges, a more accurate solution can be
obtained for the middle part of the wing with an 0-type grid. In the second part ot
this study, methods of grid adaption are reviewed and a method is developed with the
capability of adapting to several variables. This method is based on a variational
approach and is an algebraic method. Also, the method has been formulated in such
a way that there is no need for any matrix inversion. This method is used in con-
junction with the calculation of hypersonic flow over a blunt-nose body. A movie
has been produced which shows simultaneously the transient behavior of the solution
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